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ABSTRACT 

A generic approach to constructing a virtual machine for a DSL in C# is studied. It proposes a generic, object-
oriented framework, in which to build the virtual machine, using an abstract instruction class and an abstract 
environment class. They can be extended to provide a concrete layer whose interface constitutes the set of 
instructions of a DSL. The framework allows for the generation of a variety of virtual machines each supporting 
a particular DSL. Comparative performance results in relation to other DSL implementations are also provided. 
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1. INTRODUCTION 
Domain specific languages (DSLs) have been 
discussed and used in many contexts. (See, for 
example, [Arn95] and [Deu98].) In this paper the 
design and implementation of a VM Framework for 
DSLs is investigated, using .NET. Two other 
approaches for constructing a DSL are also briefly 
examined. For all three approaches, time of 
execution is examined and timed points are declared. 
The Shlaer-Mellor (SM) software construction 
method has been adopted. A fundamental difference 
between SM and other methods is the identification 
of separate subject matters, called domains. An SM 
domain is a separate real, hypothetical, or abstract 
world inhabited by a distinct set of classes that 
behave according to rules and policies characteristic 
of the domain [Shl92a]. The VM Framework is 
layered on top of an existing domain. As a 
programming language construct, a domain is simply 
represented as a namespace. The namespace forms a 
home for related classes and these classes facilitate 
the semantics of the DSL. 

The VM Framework outlined in this study is an 
extension to the typical VM, in that it defines a VM 
with an empty instruction set whose environments 
and instructions can later be extended.  

2. FRAMEWORK DESIGN 
The VM Framework provides the basic functionality 
of a typical VM, including an Intermediate 
Representation (IR) program loader, a program 
counter, internal temporary values, and conditions on 
which to build branching instructions. A proxy object 
is provided through which to start up and configure 
an instance of a VM. No modification to the VM 
Framework itself is required and its component 
classes can consequently be compiled and saved as a 
library. The VM Framework consists of five main 
classes each discussed in the following subsections, 
and is shown in figure 1. 

The EVM Class 
The EVM class (Extendable Virtual Machine) is the 
proxy class. Once instantiated, the object represents 
an instance of a configurable VM, with an empty 
instruction set and no environment. A specific 
configuration can then be applied to the VM 
instance. When an IR program is executed, the VM 
will invoke the correct Inst instance created at load 
time, defined in the configuration file. The EVM class 
also encapsulates the internal temporary values in the 
temps hash table. Each internal temporary value has  
a unique ID, and instructions with ID operands can 
gain read and write access to them. The temporary 
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values have an object type, so they can be assigned values most convenient to the DSL being 
constructed. Internally, the EVM class contains a
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Figure 1. Information model of the VM Framework 

 
loop in its Execute() method, that iterates 
through each instruction stored by the Loader. 
The very next instruction to be executed is first 
fetched, and then the Execute()method of its 
class is invoked. This may entail accessing an 
internal temporary value, or handling a branch 
instruction and saving the current program counter 
value, if need be. Some branch instructions do not 
require the program counter to be saved. 

The Config Class 
The Config class is responsible for the 
configuration setup of an instantiated VM. The 
Config class encapsulates three mappings: 
instructions, environments and 
ins_env, and are defined in Figure 2 below. 

instructions : string  Inst Type 
environments : string  Env 
ins_env      : string  string 

Figure 2. Configuration mappings 
The instructions mapping maps the string 
name of an instruction, to an Inst type. Derived 
instances of the Inst class are only created upon 
program loading. The environments mapping, 
maps the string name of an environment, to an 
instance of Env. As indicated below, the Env 
instance will typically encapsulate some Abstract 

Data Type (ADT) such as a runtime stack.   The 
last mapping, ins_env, maps the name of an 
instruction to the name of the environment that the 
instruction is to use. The name of the environment 
is looked up in the environments mapping, and 
the actual instantiated environment is retrieved, and 
later accessed by the instruction during the 
execution of the loaded IR program. 

The Loader Class 
The Loader class encapsulates a loaded IR 
program and the program counter. The loaded 
program is an array of Inst instances, for each 
instruction of the program. The Loader class also 
maps labels to program counter values. The 
mapping is updated with a program counter entry 
for each label in the program. When a branch 
occurs, the index of the next instruction can be 
retrieved using the mapping. The parser has the 
string name of the instruction and uses the mapping 
defined in the Config class to retrieve the Inst 
type that is used to create the Inst instance. Thus 
when a program is fully loaded, the array will 
contain instances of Inst, each Inst 
encapsulating its own operands ready for 
execution, and the program counter is reset to the 
beginning of the array. 



The Inst Abstract Class 
The abstract Inst class encapsulates a reference 
to a Env. This will be the environment updated by 
the instruction during the execution of the loaded 
IR program. Note that it is only a reference and 
other instructions will have a reference to the same 
Env instance. The Inst class does not define 
how the updates are performed, and instead 
provides an abstract Execute() method, that 
further extensions to the instruction are obligated to 
override. While there are still instructions to be 
executed by the loaded program, the Execute() 
method is called for each instruction. When the 
program counter has run through each instruction 
instance, the program has completed execution and 
the result of the execution can be retrieved. 

The Env Abstract Class 
The abstract Env class encapsulates some ADT, or 
even a number of ADT’s that form the central data 
storage mechanism for the language. The abstract 
Env class does not dictate the type of ADT that is 
encapsulated, and thus does not define any member 
ADT. It merely provides an abstract 
GetResult() method that extensions of Env are 
obligated to override. 

3. ENVIRONMENTS 
The purpose of the abstract Env class is to have an 
ADT that is updated during runtime, and that is 
appropriate, or convenient for processing the 
semantics of the language. For example, in a simple 
real-valued expression language, a runtime stack 
can be used as an environment, where operands are 
first loaded onto the stack and then an arithmetic 
operation is performed on the most recently pushed 
values. In a ray-tracer [Wat00a] scene description 
language, the main data structure may be a runtime 
stack, for any arithmetic calculations, and a bitmap 
image data type that is incrementally updated as the 
image information is processed. Thus it is possible 
to extend the environment built for an expression 
language, into one that is suitable for a ray-tracer 
language. Classes that extend the abstract Env 
class, are obligated to override the method 
GetResult(). The method GetResult() 
returns an instance of an object. When an 
instance of a VM has completed execution, the user 
can call GetResult() to retrieve  the result of 
the execution. In the example of an expression 
language, this would typically be a double value, 
while for a ray-tracer language this result would be 
an instance of a bitmap image type. Since 
framework users will be aware of the data type they 
are using for the result, a simple type cast to narrow 

the returned instance to the user’s own result type is 
sufficient. 
An example of EnvExp, a concrete extension to 
Env for an expression language, is provided in 
Figure 3. It encapsulated a real-valued stack, and 
returns the last entry on the stack. If all operations 
on the stack are consistent, there should be only 
one remaining value on the stack, which is the 
result of evaluating the expression. 

class EnvExp : Env 
{ 
   public EnvExp () { 
      stack = new Stack (100); 
   } 
   public override object GetResult () { 
      object result; 
      if (stack.isEmpty ()) { 
         result = -1.0; 
      } 
      else { 
         result = stack.peek (); 
      } 
      return result; 
   } 
   public Stack GetStack(){return stack;} 
   protected Stack stack; 
}  

Figure 3. Example EnvExp class 

4. INSTRUCTIONS 
There are five classes of instructions, each 
represented by an abstract class extending Inst. 
The user creates their own instruction by extending 
one of the classes of the abstract instructions 
provided. Each instruction will take at most one 
operand. The five classes of instructions are 
defined in terms of their operand types. Instructions 
written in the source IR program can be labeled, if 
they are targeted by any branching instructions. 
The token and grammar definition for parsing IR 
program code is shown in Figure 4. 

 LABEL    : [lL][aA][bB][eE][lL] 
INS      : [_a-zA-Z][_a-zA-Z0-9]* 
BRANCH   : @[1-9][0-9]* 
TEMP     : $[1-9][0-9]* 
DOUBLE   : [-+]?[0-9]+(\.[0-9]+)? 
STR      : \".*\" 
 
ir_list  : 
ir_list  : ir_list ir_instr 
 
ir_instr : ir_label INS 
ir_instr : ir_label INS STR 
ir_instr : ir_label INS TEMP 
ir_instr : ir_label INS DOUBLE 
ir_instr : ir_label INS LABEL BRANCH 
 
ir_label : 
ir_label : BRANCH 

Figure 4. IR Token definitions and grammar 

Instructions with No Operands 
A Boolean property of this class, 
LoadProgramCounter, in Figure 5, is an 



option to recall the last saved program counter. 
This allows the creation of instructions that return 
from a branch into a subroutine. 

 abstract class Inst_OpCode : Inst 
{ 
   protected bool 
   LoadProgramCounter = false; 
} 

Figure 5. The Inst_OpCode abstract class 

As an example, the Add instruction is presented in 
Figure 6, as used in a simple expression language. 
The instruction Add simply pops the two topmost 
operands off a stack and pushes the sum back on. 

Instructions with a Branch Label 
Instructions with a branch label are used for 
conditional or unconditional branching. Two 
properties are used to implement branching 
semantics, depending on the requirement of the 
branch condition. The first property, 
BranchCond, is the actual condition to 
branching. This property should be assigned to 
true in the overridden Execute() method for 
unconditional branching.  

For conditional branching it is assigned according 
to the evaluation of a boolean expression inside the 
body of the Execute() method. The second 
property, SaveProgramCounter, dictates 
whether the program counter should be saved for a 
corresponding return call into a subroutine. The 
complete class is shown in Figure 7. 

Instructions with a Temporary 
Internally, temporaries are implemented with a 
Hashtable that map temporary names (ID’s) to 
object references. They are akin to conventional 
registers, but a temporary can be treated as any 
object type as illustrated in Figure 8. Instructions 
have full access to a temporary. The instruction can 
modify the temporary by typecasting the object to 
the required usable type. 

Instructions with a String Parameter 
Instructions with string parameters are useful in 
string processing applications such as those that 
deal with regular expressions. This class, shown in 
Figure 9, exists to provide the means to parse a 
string defined in the source IR program and to store 
it in the variable str. 

Instructions with a Number Parameter 
Similarly to the above string parameter instruction, 
instructions with number parameters exist to 
provide the means to parse numbers defined in the 
source IR program, or to facilitate instructions that 

provide any intermediate arithmetic calculation. 
Real or integer numbers can be parsed. However, 
internally they are treated as double values. 

 class Add : Inst_OpCode 
{ 
   public Add (EnvExp env) 
   { 
      this.env = env; 
   } 
 
   public override void Execute () 
   { 
      double d1; 
      double d2; 
      double r; 
 
      d2 = (double) 
          ((EnvExp)env).GetStack().pop(); 
 
      d1 = (double) 
          ((EnvExp)env).GetStack().pop(); 
 
      r = d1 + d2; 
 
      ((EnvExp)env).GetStack().push(r); 
   } 
} 

 
Figure 6. The Add instruction 

 abstract class Inst_OpCode_Br : Inst 
{ 
   protected string label; 
 
   protected bool 
   BranchCond = false; 
 
   protected bool 
   SaveProgramCounter = false; 
} 

  
Figure 7. Inst_OpCode_Br  

 abstract class Inst_OpCode_ID : Inst 
{ 
   protected string ID; 
   protected object temp; 
} 

 
Figure 8. Inst_OpCode_ID  

 abstract class Inst_OpCode_Str : Inst 
{ 
   protected string str; 
} 

 
Figure 9. Inst_OpCode_Str  

 abstract class Inst_OpCode_Num : Inst 
{ 
   protected double num; 
} 

Figure 10. Inst_OpCode_Num  

5. EXTENDING THE FRAMEWORK 

The Configuration File 
Before an instantiated VM can execute instructions 
in a loaded IR program, the VM needs to be 
configured as a specific VM type. This is achieved 
through a configuration file that is initially loaded. 
Once the VM has been configured, an IR program 



can be loaded and executed. The configuration file 
specifies the name of the class used as an 
environment, as well as the names of all instruction 
classes, both stored as .NET DLL’s. The 
configuration file will give the complete instruction 
set for a particular VM. Figure 11 gives an example 
configuration file for an expression language.  
The keyword environment is followed by an 
environment class name, and one environment 
instance will be instantiated for that class. When 
instructions are instantiated at program load time, 
the environment that will be used by the instruction 
is named after the using keyword. 

Extending the Environments 
Suppose a new language is required, be it similar to 
an existing language, or one that features an 
entirely new syntax. If an existing language uses an 
environment with an appropriate data structure then 
the new language can extend the existing 
environment to suite its own needs. A ray-tracer 
language needs to render a scene onto a bitmap, but 
may also require a means to perform numeric 
calculations. Thus the EnvExp environment of the 
expression language can be extended with two 
extra data structures; a scene and a bitmap, giving 
rise to an EnvRT environment suitable for a ray-
tracer. 

Extending the Instruction Sets 
Instructions are extended from one of the five 
instruction classes mentioned earlier, to a set of 
concrete instruction classes instantiated at load 
time. Extending instruction sets with environments 
that are subclasses of each other, makes for a 
scalable framework in which to design a tailored 
VM for a DSL. The ray-tracer language serves as 
an example. The EnvRT environment is a subclass 
of EnvExp, so any one of the instructions 
operating on an EnvExp, can also operate on a 
EnvRT, as illustrated in the configuration file for 
the ray-tracer language, depicted in Figure 12. 

6. BUILDING A DSL 
Once a defined environment and instruction set are 
in place, a front-end for the DSL needs to be 
developed. Essentially this is the task of writing a 
simple compiler for the DSL. This entails designing 
syntax for the language using compiler tools. The 
example DSL in this section was built using LG to 
define the tokens for the lexer, and PG to define the 
grammar for the parser. Both tools bear a familiar 
syntax to most commonly used industry tools. The 
translation of a small, functional expression 
language can be intuitively understood by the 
following illustrative example. The program in 
Figure 13 evaluates the expression 

 
 (* Create an instance of the *) 
(* expression environment. *) 
environment EnvExp 
 
(* Register the following expression 
(* instructions with the DVM. *) 
Push  using EnvExp 
Store using EnvExp 
Load  using EnvExp 
Sub   using EnvExp 
Add   using EnvExp 
Mul   using EnvExp 
Br    using EnvExp 
Brgz  using EnvExp 
Nop   using EnvExp 
Div   using EnvExp 
 
(* Some generic instructions *) 
Call  using EnvExp 
Ret   using EnvExp 
Print using EnvExp  

Figure 11. Example configuration file to setup 
the VM for a small expression language 

 (* Create an instance of the *) 
(* ray-tracer environment.   *) 
environment EnvRT 
 
(* These instructions were part of    *) 
(* the EnvExp environment.            *) 
Push      using EnvRT 
Add       using EnvRT 
Sub       using EnvRT 
Mul       using EnvRT 
Div       using EnvRT 
 
(* Ray-tracer specific instructions. *) 
LookAt    using EnvRT 
Specular  using EnvRT 
Diffuse   using EnvRT 
Reflect   using EnvRT 
Translate using EnvRT 
Quad      using EnvRT  

Figure 12. Configuration file to setup a ray-
tracer language borrowing some instructions 
from an expression language 
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in a functional manner. The token and grammar 
definitions for each of the five instruction types are 
given in section 5, and the translated IR code for 
this program is shown in Figure 14 as a concrete 
example, that demonstrates the use of temporaries 
(as storage for variables n and i) and also 
branching instructions for the actual 
implementation of the summation construct. 

 let 
   n = 5 
in 
   9 + sum (i) 1..n (2 * i) 
end 

 
Figure 13. Programmatic representation of the 

summation expression (1) 
The generated IR code performs operations on a 
runtime stack. This stack is indeed defined as part 



of the environment EnvExp discussed earlier, and 
once the IR code has completed execution, the only 
remaining value on the stack will be the result of 
the expression. 

      Push 5 
     Store $1 
     Push 9 
     Push 1 
     Store $2 
     Push 0 
@100 Load $2 
     Load $1 
     Sub 
     Brgz label @200 
     Push 2 
     Load $2 
     Mul 
     Add 
     Load $2 
     Push 1 
     Add 
     Store $2 
     Br label @100 
@200 Nop 
     Add  
Figure 14. Translated IR program of the 

summation expression (1) 

7. COMPARATIVE RESULTS 
Comparative performance results were done 
between three different DSL implementations: an 
interpreter, a hardcoded VM and the VM 
Framework. Two time intervals were compared for 
each implementation; compiling DSL source code 
to IR (SRC IR), and executing the IR to observe 
the semantics (IR SEM). The total time 
(SRC SEM) is also calculated. The measured time 
is in units of 100ns. Only the total time 
(SRC SEM) is relevant for the interpreter. The 
hardcoded VM has a predefined set of instructions 
and the VM Framework is similarly configured 
with the same set of instructions. For the purpose of 
the experiment, a ray-tracer language, used to 
define geometric objects to be rendered onto a 
scene. 
From the performance results in Figure 15, it can 
be seen that using some of the reflection properties 
of .NET does not necessarily impede the IR 
program’s execution speed, and in this case it is 
actually shown to perform better than its hardcoded 
counterpart. Naturally, the interpreter is quickest to 
deliver observable results, however, it will suffer 
from a lack of scalability. The hardcoded VM will 
suffer less from scalability problems, as it is easier 
to add new instructions as part of the VM core. The 
VM Framework treats environments, and 
instructions that access these environments, as 
separate external libraries, or DLL’s, and they do 
not form part of the VM Framework’s core 
execution unit. Rather, these DLL’s are configured 
together as a set of building blocks to yield a 
customized VM for a particular DSL. Furthermore, 

the VM framework easily accommodates a scaling 
up of the DSL with new constructs as the need 
arises. 
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Figure 15. Comparative performance results of 

three types of DSL implementations 

8. CONCLUSION 
This paper described a framework that allows rapid 
development of DSL’s, with emphasis on language 
scalability. The VM Framework also relies on 
certain reflective constructs of .NET to configure 
an instantiated VM at runtime, and .NET DLL’s are 
used extensively to aid in scalability and 
modularity. For the VM Framework to serve any 
use it must be extended by a set of concrete classes 
that form the instruction set and environments 
suitable for a particular DSL. Typically, a domain 
expert will work alongside a software practitioner 
to collaboratively tailor a DSL to the expert’s 
needs. Thus the syntax of constructs needs to be 
refined to be as intuitive as possible, while the 
practitioner needs to decide what type of 
instructions are necessary to facilitate the semantics 
of the constructs.  This may involve a few iterations 
but a flexible framework will aid in the 
development lifecycle of the DSL. 
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